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9.3.3. O-incompressible surfaces. There is of course also a 8-version of j

incompressibility. Let S C M be a properly embedded orientable surface in a D n
3-manifold M. A 9-compressing disc for S is a disc D with D = aU3, where T M s am
o lies in S and B in @M as in Figure 9.9-(left); we also require that there is < -

no sub-disc D’ € S with 8D’ = a U B’ and B’ € 8S. The move in Figure 9.9
is a §-compression and transforms S into a surface S’ C M simpler than S: Figure 9.9. We can also surger a surface S along a disc D touching the

boundary in a segment. The result is a new properly embedded surface S'.

S

Proposition 9.3.7. The surface S’ may have one or two components S/, . d wied Q
b Vil I .
and x(S}) > x(S) for each component. we dont want ot v
7 ; ovoiding
Proof. We have x(S’) = x(S)+ 1. If S” has one component we are done, a
so suppose S’ = S{ U S5, Since a did not bound a disc in S, no S} is a disc,

i dicC wnnld
hence x(S') < 0 that implies x(S) > x(S) for i = 1,2. O bleflun Gomepressicy

43(\1{:

Corollary 9.3.8. Let S C M be any properly embedded orientable surface. St JKLIA 'Z‘:] o

After 0-compressing it a finite number of times it transforms into a disjoint
union of spheres, discs, and 9-incompressible surfaces.

A properly embedded connected orientable compact S € M with x(S) <0
is 0-compressible if it has a 0-compressing disc, and 0-incompressible other-
wise. See Figure 9.16.
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Proposition 9.4.3. Let M be an oriented, compact, irreducible, and 0-
irreducible 3-manifold with (possibly empty) boundary. Every non-trivial ho-
mology class a € Hy(M,OM;Z) is represented by a disjoint union of incom-
pressible and d-incompressible oriented surfaces. -

Proof. Every class o is represented by a properly embedded oriented sur- Proposition 1.7.16. Let M be a compact oriented n-manifold with (possibly
L . . . empty) boundary. Every class in H,—1(M, 8M. Z) is represented by an oriented
face S by Proposition 1.7.16. A compression as in Figure 9.8 and 9.9 does properly embedded hypersurface S ¢ M.
not alter the homology class of the surface: indeed in homology we have
S’ — S = 0B where B= D x [—1,1] is a tubular neighbourhood of the com-
pressing disc D. Hence [S'] = [S] = a.

We compress S until its connected components are either incompressible
and d-incompressible surfaces, discs, or spheres. Since M is irreducible and
O-irreducible, discs and spheres bound balls and are hence homologically trivial,
so they can be removed. O
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* Corollary 9.4.4. Let M be oriented, compact, irreducible, and 0-irreducible.
If Ho(M, 0M; Z) # {e} then M is Haken.

Corollary 9.4.5. Let M be oriented, compact, irreducible, and 0-irreducible.
If OM # & and M # B, then M is Haken.

Proof. If 9M contains a sphere, it bounds a ball B and hence M = B.
Otherwise H1(8M) has positive rank, and hence Ha(M,dM) = H(M) also
has positive rank by Corollary 9.1.5.

- . Corollary 9.1.5. Let M be an oriented compact 3-manifold. We have
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m = fundamental group of a hyperbolic 3-manifold N

Bonahon
Thurston

N hyperbolic N closed
with boundary hyperbolic

¢ Kahn-Markovic
N contains a

geometrically finite N contains a dense set of
surface quasi-Fuchsian surface groups

Thurston * Sageev
Bergeron-Wise

7 word hyperbolic
with quasi-convex 7 is fundamental group of a

hierarchy non-positively curved cube complex

Wise w v\’\/iso * Agol

7 is virtually compact special

S
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V * Haglund-Wise
N virtually Agol . .
fbered. m virtually a quasi-convex subgroup of a RAAG

* Haglund *

7 GFERF 7 large

* Agol, Calegari-Gabai ¢

7 LERF N virtually Haken

Diagram 2. The Virtually Compact Special Theorem.
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