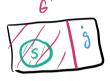
Det: 6 is residually finite if $\forall g \in G \ni id \}$, $\exists G' < f.i.G$ s.t. $g \notin G'$.

Gr 3

G G' separates of from id.

Alt. det: G is RF if $\forall g \in G - \{id\}$, $\exists \varphi : G \rightarrow F$ where F is finite and $g \notin \ker(\varphi)$

bet: A subgroup S of G is separable if $\forall g \in G-S$ $\exists G' \prec f_i G$ s.t. $S \prec G'$ but $g \notin G'$.



G'syarates S from g.

If G is suparable on all finitely gen subgroups then G is LERF (locally extended res. fin)

O(ERF (sep on quasi-convex subgroups)
6FERF (geom. finite subgroups are separable)

RF and algorithms: Word problem for a group—
can you decide (in finite
time) whater an eliment
q E G is the trivial eliment.

RF = solvable word problem

GL₂(Z) is RF: take
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \neq id$$

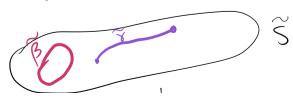
choosing p carefully we see that $A \notin her(CP_r)$ where CP_r : $GL_2(ZP_r)$

$$ex$$
: $A = \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix}$ then we can choose $p = 5$ for instance.

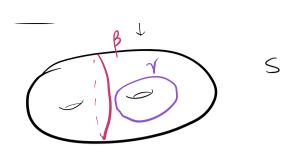
Exercise: Prove that it 6 is RF then any subgroup of 6 is RF and any finite index extension (i.e. H>6) is also RF.

Let H < G and take $h \in H - id$ $\exists G' < G \text{ and } h \notin G'. \text{ Now use the following fact:}$ $[G' \cap H : H] \leq [G' : G] \Rightarrow G' \cap H \text{ is the f.i.}$ Subgroup of H s.t. $\text{he } G' \cap H'.$

What does RF mean guometrically: $\frac{1}{1}$ to $\frac{1}{1}$ (S) is a surface $\frac{1}{1}$ $\frac{1}{1}$ (S) is RF Consider $\frac{1}{1}$ (S) where $\frac{1}{1}$ $\frac{$



BETTI(S)

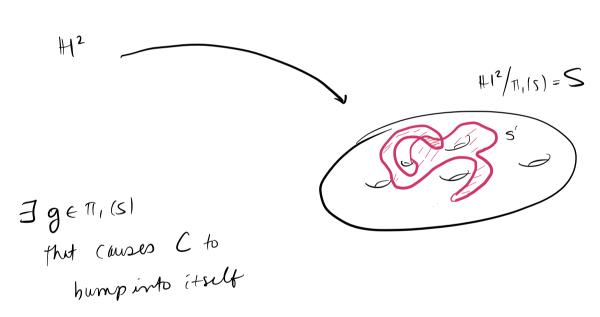


Scott '86 ish: TI, (5) ove LERF

Scott's Witerion

TI, (5) being LERF means

that we can promote in mensions to embeddings using finite covers.



If I find $\Pi_{i}(\widetilde{S}) \nleq_{i} \Pi_{i}(S)$ s.l. $\Pi_{i}(S) \subset \Pi_{i}(S)$ but $g \notin \Pi_{i}(\widetilde{S})$

H² — fin deg.

In general, $g_1, ..., g_k \in \Pi_1(s)$ (auxing a cot set s' to intersect itself: so applying left-ness k times gives as a $\Pi_1(\tilde{s}) < \Pi_1(\tilde{s})$ fin. $\Pi_1(s') < \Pi_1(\tilde{s})$ but $g_1, ..., g_k \notin \Pi_1(\tilde{s})$ s.t. $\Pi_1(s') < \Pi_1(\tilde{s})$ but $g_1, ..., g_k \notin \Pi_1(\tilde{s})$

Scott: Let Y be a closed grodusic in S,

Thun 7 5-S fin. dig. s.t. & lifts to

be embedding ("Le. Yett, (3)" and V is a s.cc.)

If we don't care about a fin, deg. cover there is a more obvious covering space of S st. of is a s.c.l. in this coner.

(onsider the coner ob

S corr. to 2x7 < TT,(S).

8 is
(oxod.

S is the course are looking for.

Now (msider $T_1(M)$ where M closed hypo 3-mfd. If we know that $T_1(M)$ was LERF (or QLERF) then we win:

- (1) Kahn-Marhovic > there are lots of quasi-convex immuned surfaces in any closed hyp. 3-mfd.
 - Scott's criterion tells us that QCERE
 allows us to promote such an immersed
 surface to be embedded in a fin. deg
 cour.

RAAG are RF and QCERF

