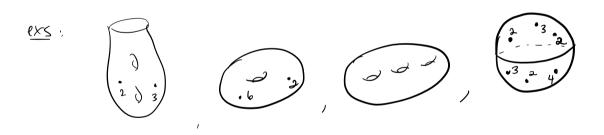
Recall that for \mathbb{E}^3 and Nil we have $\chi(B) = 0$ and the possible orbifolds B are: T. K. ($\mathbb{RP}^2, 2, 2$), ($S^2, 2, 2, 2, 2$), ($S^2, 2, 3, 6$), ($S^2, 3, 3, 3$), ($S^2, 2, 4, 4$).

- From this we saw that for
$$\mathbb{E}^3$$
 mfds, the
condition that $e=0$ gives us only $b \mathbb{E}^3$ mfds.
- For Nil we can do many diff fillings to get $e\neq 0$
for instance when $B = (S^2, 2, 3, b)$, a Nil mfd
M could be $M = (S^2, (2,1), (3,1), (6,1))$
 $(S^2, (2,1), (3,2), (6,1))$
 $(S^2, (2,1), (3,2), (6,5))$
 $(S^2, (2,3), (3,2), (6,5))$

In this way we see that if the list of poss base orbifolds is finite, we can characterize mfds M without too much difficulty.

Then, for
$$S^3$$
 geometry, we had the next best case.
The possible B subject to $X(B)>0$ were
 (S^2, n, n) , $(S^2, 2, 2, n)$, $(S^2, 2, 3, 3)$, $(S^2, 2, 3, 4)$, $(S^2, 2, 3, 5)$
and we needed to ensure that the slopes of fullings were s.t.
 $e = 2 \frac{9!}{p_1} \neq 0$. For (S^2, n, n) and $(S^2, 2, 2, n)$ families

First observation is that orbifolds w/ X(B)<0 aunit as easily characterized as above.



SO MANY!

Once we get a handle on these, we then understand $H^2 \times IR$ geom vs SL2 as which fillings give $e = 2^{-\frac{2i}{p_i}} = 0$ $n \neq 0$. From perspective of project 1'm working on, we want to construct branched mfds $M_{H^2 \times IR}$ and M_{SL2} s.t. closed mfd M immerses in $M_{H^2 \times IR} \ll M$ odmits $H^2 \times IR$ gem

in
$$M_{SL_2} \iff " SL_2$$
 grow

First let's try to understand all B w/ X(B)<0.

 $\langle ($

(

We call these possible W's scatteriding attachments since we obtain B from A by attaching copies of the W's

Now let $m = \# \sigma_b \ni comps \sigma_b A \implies \chi(A) = 2 - m$. Let p_1, \dots, p_k be orders of concepts cb B not that $K \le m$. Then, $\chi(B) = \chi(|B|) - \sum_{i=1}^{k} (1 - \frac{1}{p_i}) = 2 - m + k - k + \sum_{i=1}^{k} \frac{1}{p_i} = 2 - m + \sum_{i=1}^{k} \frac{1}{p_i}$

Since
$$p_i \ge 2$$
, we have
 $2-m \le \gamma(B) \le 2-\frac{m}{2}$
 $e_X: Show that other a thachments
 $d_m t = f_t(B), v_s \chi(B).$$

Back to goal: We want to understand which B have
$$X(B) < 0$$
.
() $m \ge 3$ otherwise $2 - m \le X(B) \Rightarrow X(B) \ge 0$.
() $f = m \ge 5$ then $\# of$ (one pts and their orders don't matter
() because $X(B) = 2 - m + \sum_{i=1}^{k} \frac{1}{p_i} \le 2 - m + \sum_{i=1}^{k} \frac{1}{2}$ where $k \le m$
on other hand when $m = 4$ and $\exists 4$ use pts δb order $2, X(B) = 2 - 4 + 2 = 0$, which we ward

to exclude)

The seven exceptional orbifolds are:

$$(4, \leq 3), (4, 4; \geq 3), (3, 3; \geq 7, \geq 3), (3, 3; \geq 5, \geq 4)$$

$$(3, 3; \geq 4, \geq 3, \geq 3), (3, 2; \geq 3), (3, \leq 1)$$

$$(4, \leq 3; \geq 4, \geq 2, \geq 2), (4, 4; \geq 3, \geq 2, \geq 2), (4, 4; \leq 3, \geq 2, \geq 2), (4, 4; \geq 3, \geq 2, \geq 2), (4, 4; \leq 3, \geq 2), (4, 4; \geq 3, \geq 2), (4, 4; 2; 3, \geq 2), (4, 4; 3; 2; 2), (4, 4; 2; 3, \geq 2), (4, 4; 2; 3, \geq 2), (4, 2; 2; 2), (4, 2; 2; 2), (4, 2; 2; 2), (4, 2; 2; 2), (4, 2; 2; 2), (4, 2; 2; 2), (4, 2; 2; 2), (4, 2; 2; 2), (4, 2; 2; 2), (4, 2; 2), (4, 2; 2; 2), (4, 2; 2), ($$

Let's focus on generic case. So we consider all scatto I diry. w/ Z5 2 comps.

For project we need to find a way to encode this large class of orbifolds concisely -> use branched outface!

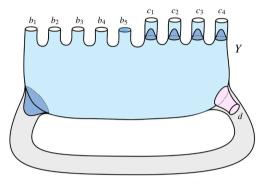


Figure 2: The branched scaffolding Y

Claim: All scaffoldings A = A(m) w) $M \ge 5$ immense in Y. In fact the only upt. surfaces that immense in Y are A(m) w) $M \ge 5$.

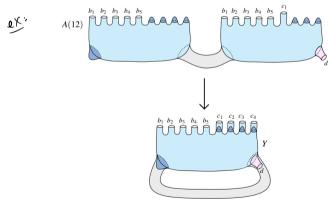


Figure 3: Immersion of A(12) into Y

Aim : Take Y × S'