Recall that for \mathbb{E}^{3} and Nil we have $X(B)=0$ and the possible oubifolds B are: $T, K,\left(\mathbb{R P}^{2}, 2,2\right),\left(S^{2}, 2,2,2,2\right),\left(S^{2}, 2,3,6\right),\left(S^{2}, 3,3,3\right),\left(S^{2}, 2,4,4\right)$.

- From this we sur that for $\mathbb{E}^{3} m+d s$, the condition that $e=0$ gives us only $6 \mathbb{E}^{3} m f d s$.
- For Nil we can do many diff fillings to get $e \neq 0$ for instance when $B=\left(\$^{2}, 2,3,6\right)$, a Nil mfel M (could be $M=\left(S^{2},(2,1),(3,1),(6,1)\right)$

$$
\begin{aligned}
& \left(\mathbb{S}^{2},(2,1),(3,2),(6,1)\right) \\
& \text { or } \\
& \left(\mathbb{S}^{2},(2,1),(3,2),(6,5)\right) \\
& \left(\$^{2},(2,3),(3,2),(6,1)\right) \\
& \text { etc. } \ldots
\end{aligned}
$$

In this way we see that if the list of poss. base orbifolds is finite, we con characterize mfds M without too much difficulty.

Then, for 8^{3} geometry, we had the next best case.
The possible B subject to $X(B)>0$ were

$$
\begin{aligned}
& \text { The possible } B \text { subject } \\
& \left(\$^{2}, n, n\right),\left(\$^{2}, 2,2, n\right),\left(\$^{2}, 2,3,3\right),\left(\$^{2}, 2,3,4\right),\left(\$^{2}, 2,3,5\right)
\end{aligned}
$$

and we needed to ensure that the slopes of felling were sit $e=\sum \frac{q_{i}}{p_{i}} \neq 0$. For $\left(\Phi^{2}, n, n\right)$ and $\left(\Phi^{2}, 2,2, n\right)$ farmilis
(lens spaces and prism m fobs) we ensured this using reg. language $\langle L, R\rangle \cdot R$ where R ensured mevidiare wasn't glued to meridian.

Now we want to intuitively understand $\mathrm{HI}^{2} \times \mathbb{R}$ and $\widetilde{\mathrm{SC}_{2}}$ germs assuming we know:

- M has $H^{2} \times \mathbb{R}$ geom. $\Longleftrightarrow C=0$ and $X(B)<0$ (last
- M has $\widetilde{S L}_{2}$ geom $\Longleftrightarrow e \neq 0$ and $X(B)<0$.

First observation is that orbifolds w/ $X(B)<0$ oust as easily characterized as above.
exs:

SO MANY!
Once we get a handle on these, we then understand $H^{2} \times \mathbb{R}$ geom vs $\widetilde{S L}_{2}$ as which fillings que $e=\sum \frac{q_{i}}{p_{i}}=0 \quad n \neq 0$.

From perspective of project $I^{\prime} \mathrm{m}$ working on, we want to construct branched mfds $M_{H^{2} \times \mathbb{R}}$ and $M_{S_{2}}$ sit. closed mfd M immerses in $M_{\mathbb{H}^{2} \times \mathbb{R}} \Leftrightarrow M$ admits $\mathbb{H}^{2} \times \mathbb{R}$ gem

First let's thy to understand all B wi $X(B)<0$.

Def: Pere is a compact, connected, planar surface $A \subset B$ called the scaffolding that is dis joint from the singular set of B and st each conn. comp W of $\overline{B \backslash A}$ is:

- disc awl a cone pt., $\}$ create sing. locus

- an annulus (to create genus) topilosys

We call these possible W 's scaffolding attachments since we obtain B furn A by altachiry copies of the w 's
ex: Let $B=$

W's:
Now let $m=\#$ of a coups
that $k \leq m$. Then,

Since $p_{i} \geq 2$, we have
EX: Show that other a ttachmest

$$
2-m \leq X(B) \leq 2-\frac{m}{2}
$$

Bach to goal: we want to understand which B have $X(B)<0$.
(1) $m \geq 3$ otherwise $2-m \leq X(B) \Rightarrow X(B) \geq 0$.
(a) If $m \geq 5$ then \# of cone pts and their orders don't matter (because $X(B)=2-m+\sum_{i=1}^{k} \frac{1}{p_{i}} \leq 2-m+\sum_{i=1}^{k} \frac{1}{2}$ where $k \leq m$ (on other hand when $m=4$ and $\exists 4$ woe pts ob order $2, X(B)=2-4+2=0$, which we want
to exclude)

So when $m=\# \partial$ coups of $A \geq 5$ we call B generic. when $m=3,4$, we call B exceptional.
sign of $X(B)$ depends on order of come pts.

Note: since $x(B)=2-m+\sum_{i=1}^{k} \frac{1}{p_{i}}$, if we increase the order of a come pt p_{i} on decrease the total no. of cone pts k of B, this only reduces $X(B)$.

There are seven exceptional oubifolds Bol $X(B)$ that we list now using the notation $\left(m, k ; p_{1}, \ldots, p_{k}\right)$
 $p_{i} \geq 2$ we. leave it off the list
The seven exceptional oubifolds are:

$$
\begin{aligned}
& (4, \leq 3),(4,4 ; \geq 3),(3,3 ; \geq 7, \geq 3),(3,3 ; \geq 5, \geq 4) \\
& \left\{\begin{array}{l}
(3,3 ; \geq 4, \geq 3, \geq 3) \\
(4, \leq 3 ; \geq 2, \geq 2, \geq 2)
\end{array}(3,2 ; \geq 3)(3, \leq 1)\right. \\
& \underbrace{(3,3 ; \geq 4, \geq 3, \geq 3)}_{\downarrow \downarrow} \underbrace{\left(\partial A \mid \text { corepts }^{40}\right.}_{\text {orders }}
\end{aligned}
$$

Let's focus on generic case. So we consider all scaffolding. $\omega \mid \geq 5$ a comps.

For project we reed to fire a way to encode this huge class of orbifolds concisely \rightarrow use branched surface!

Figure 2: The branched scaffolding Y

Claim: All scaffoldings $A=A(m)$ w) $m \geq 5$ immerse in Y. In fact the only pt. surfaces that immense in Y are $A(m) w$) $m \geq 5$.
ex:

Figure 3: Immersion of $A(12)$ into Y

Aim: Take $Y \times \mathbb{S}^{\prime}$

