Product Geometries: $S^{2} \times \mathbb{R}$ and $H^{2} \times \mathbb{R}$
S ${ }^{2} \times$ R: (very few of twas)
(cu rbaal): Maim: $\operatorname{lsom}\left(\Phi^{2} \times \mathbb{R}\right)=1 \operatorname{som}\left(S^{2}\right) \times \operatorname{lsom}(\mathbb{R})$

Sec curvature is a no. assigned to every plane in tangent space of every $p t \quad p \in \mathbb{S}^{2} \times \mathbb{R}$

- plane is horizontal if its tangent to $\2 factor
- vertical if its tangent to \mathbb{R} factor

Prop 12.4.1. The sectional curve. of horiz. and vert planes are 1 and, resp.

Proof. Let $\gamma \subset S^{2}$ be a closed geodesic. The surfaces $S^{2} \times y$ and $\gamma \times \mathbb{R}$ are totally geodesic, because they are fixed by some isometric reflections of $S^{2} \times \mathbb{R}$. Therefore the sectional curvatures of horizontal and vertical planes equal the gaussian curvatures of these surfaces, which are 1 and 0 .

Proposition 12.4.2. We have

$$
\operatorname{Isom}\left(S^{2} \times \mathbb{R}\right)=\operatorname{Isom}\left(S^{2}\right) \times \operatorname{Isom}(\mathbb{R})
$$

$$
\mathbb{S}^{2} \times R / \Gamma
$$

Proof. We certainly have the inclusion \supset, which gives to every point $\mathcal{P}^{\mathcal{R}} \in$ $S^{2} \times \mathbb{R}$ a stabiliser in $\operatorname{Isom}^{+}\left(S^{2} \times \mathbb{R}\right)$ isomorphic to $\mathrm{SO}(2) \rtimes C_{2}$, a proper maximal subgroup of $\mathrm{SO}(3)$ by Proposition 6.2.15.

If there were more isometries that that, there would be more fixing p since they act transitively on $S^{2} \times \mathbb{R}$ and the stabiliser would be the whole of $\mathrm{SO}(3)$, a contradiction because the sectional curvature of $S^{2} \times \mathbb{R}$ is not constant.

$$
\gamma \times \mathbb{R}
$$

reflect in sphere chord. about γ

The isom. groups of S^{2} and \mathbb{R} each have \downarrow two conn. components, \therefore the
orient pres. isomgroup group 1 som $\left(\$^{2} \times \mathbb{R}\right)$ has 4 conn. comps, of a cylinder two of which are orient- pres.
$x \in \mathbb{S}^{2}$ is stabilized

$$
\text { by } S O(2) \subset O(3)
$$

Prop. 12.4.3: An ovientakle $m f d . M$ admits a finite vol. $\$^{2} \times R$ geom iff M is a closed seifert m fd with $x>0$ and $e=0$.

Pf: The closed Leif. mfds wi $e=0$ and $X>0$ are $\Phi^{2} \times \$^{\prime}$ and $\mathbb{R} P^{2} \tilde{x} \$$.

We want to classify the closed Seifert manifolds with $\chi \geqslant 0$ and $e=0$.
We start with the case $\chi>0$.
Proposition 10.3.36. Every closed Seifert fibration with $\chi>0$ and $e=0$ is isomorphic to one of the following:

$$
S^{2} \times S^{1}, \quad \mathbb{R}^{2} \approx S^{1}, \quad\left(S^{2},(p, q),(p,-q)\right)
$$

The manifolds of the last type are all diffeomorphic to $S^{2} \times S^{1}$.
Proof. If the base surface S is a sphere with $\leqslant 2$ singular fibres, we use Exercise 10.3.6. Otherwise S is one of the following orbifolds (see Table 6.1): $\left(S^{2}, 2,2, R\right) \quad\left(S^{2}, 2,3,3\right), \quad\left(S^{2}, 2,3,4\right), \quad\left(S^{2}, 2,3,5\right), \quad \mathbb{R} \mathbb{P}^{2}$,
with $p \geqslant 2$. In all cases except $\mathbb{R P}^{2}$, we get $e \neq 0$ for any choice of Den filling parameters: for instance

$$
e\left(S^{2},\left(2, q_{1}\right),\left(2, q_{2}\right),\left(p, q_{3}\right)\right)=\frac{q_{1}+q_{2}}{2}+\frac{q_{3}}{p} \neq 0
$$

The other cases are analogous.
The manifold $\mathbb{R} \mathbb{P}^{2} \widetilde{\times} S^{1}$ is not diffeomorphic to $S^{2} \times S^{1}$, because they have non-isomorphic fundamental groups. Moreover, $\mathbb{R P}^{2} \widetilde{\times} S^{1}$ is not prime:

So now me cunt to produce $\Gamma<1 \operatorname{som}\left(S^{2} \times \mathbb{R}\right)$

$$
\text { sit. } \quad \mathbb{S}^{2} \times \mathbb{R} / \Gamma \cong \begin{array}{r}
\mathbb{S}^{2} \times \mathbb{S}^{\prime} \\
\text { and } \\
\mathbb{R}^{2} \tilde{\times} \mathbb{S}^{\prime} \tag{2}
\end{array}
$$

Any time we have base
(2) $\Gamma=\left\langle(i, r),\left(i, v^{\prime}\right)\right\rangle$ where i is the
antipodal map and r, r^{\prime} are reflections

$$
e(M) \neq 0
$$

w.ril. distinct pts in \mathbb{R}.

Conversely, pick an oriontable $M=S^{2} \times \mathbb{R} / \Gamma$. The discrete grip $\Gamma<1 \operatorname{som}\left(s^{2}\right) \times 1 \operatorname{som}(\mathbb{R})$ preserve
the foliation into spheres $S^{2} \times\{x\}$ which descend into a foliaturi by Φ^{2} or $\mathbb{R P}^{2}$'s in M. Rerefore M decomposes into orient. int bundles $\mathbb{S}^{2} \times I$ and $\mathbb{R} P^{2} \tilde{\times} I \Rightarrow M$ is either $\mathbb{D}^{2} \times \mathbb{S}^{1}$ or $\mathbb{R} P^{2} \tilde{x} \mathbb{S}^{1}$.

$$
\mathbb{R} p^{2} \underset{\uparrow}{\sim} \mathbb{S}^{1} \longrightarrow \mathbb{R}^{2}
$$

$H^{2} \times \mathbb{R}$ case follows similar method:
12.4.2. $\mathbb{H}^{2} \times \mathbb{R}$ geometry. We give $\mathbb{H}^{2} \times \mathbb{R}$ the product metric. The discussion of the previous section applies as is to this case, showing that horizontal and vertical planes in the tangent spaces have sectional curvature -1 and 0 . This in turn implies that

$$
\operatorname{Isom}\left(\mathbb{H}^{2} \times \mathbb{R}\right)=\operatorname{Isom}\left(\mathbb{H}^{2}\right) \times \operatorname{Isom}(\mathbb{R})
$$

has four connected components, two being orientation-preserving. It is convenient to write the exact sequence

$$
0 \longrightarrow \operatorname{Isom}(\mathbb{R}) \longrightarrow \operatorname{Isom}\left(\mathbb{H}^{2} \times \mathbb{R}\right) \xrightarrow{p} \operatorname{Isom}\left(\mathbb{H}^{2}\right) \longrightarrow 0
$$

A discrete group $\Gamma<\operatorname{Isom}(X)$ is cofinite if X / Γ has finite volume.

Prop 12.4.4. A discrete group $\Gamma<1 \operatorname{som}\left(H^{2} \times \mathbb{R}\right)$ is cofinite of both $p(\Gamma)$ and $\Gamma \cap \operatorname{ker}(p)$ are discrete and cofinite.
we will ship the proof secern though its cute.
Corollary 12.4.5: If the int (M) a compact orient. mfd adinits a binitivolume $H^{2} \times \mathbb{R}$ geometry then M is a srifert m fd and $X<0$. If M is closed then $e=0$.
Pf: $\ln \left((M)=\left(\left.H\right|^{2 \times} \mathbb{R}\right) / \Gamma\right.$ with Γ cofinite. By Prop. 12.4 .4 the group $\Gamma \cap \operatorname{ker}(p)$ quotients any line $\{x\} \times \mathbb{R} \subset \mathbb{H}^{2} \times \mathbb{R}$ to a circling M, giving a Seifert fibuation $M \rightarrow S$ onto the finite area orbifold $S=\mathrm{H}^{2} / p(\Gamma)$, We have $X(S)<0$, and either $\partial M \neq 0$ or $e=0$ because $H^{2} \times\{y\}$ projects to a sector for $\underbrace{M \rightarrow S}_{\text {mind of }}$.

$$
\begin{array}{ccc}
\tilde{M} \cdots \cdots & \Sigma \\
\vdots & & \downarrow \\
M & S
\end{array}
$$

$\tilde{M} \rightarrow \Sigma$ has a section

$$
\stackrel{M}{\rightleftarrows} \Rightarrow \partial M \neq \phi
$$

$$
H^{2} \times\langle y\rangle \hookrightarrow H^{2} \times \mathbb{R}
$$

This implies the same is true for M.

$$
\begin{aligned}
& \text { If } \exists M \xrightarrow{\pi} S \text { whee } M \text { is an } S^{\prime} \text { bundle our } \\
& \text { a surfore } S \text {. Then a section is iS } M \\
& \pi \cdot i=i d_{s} .
\end{aligned}
$$

We now prove the converse of Corollary 12.4.5.
Proposition 12.4.6. If M is a Seifert manifold with $\chi<0$ and either $\partial M \neq \varnothing$ or $e=0$, the interior of M admits a finite-volume complete $\mathbb{H}^{2} \times S^{1}$ geometry.

Proof. By hypothesis there is a section Σ of $M \rightarrow S$, which is the fibre of a bundle $M \rightarrow O$ over a 1 -orbifold O, see Section 11.4.4. The two structures give two exact sequences

$$
\begin{array}{r}
0 \longrightarrow K \longrightarrow \pi_{1}(M) \xrightarrow{f} \pi_{1}(S) \longrightarrow 0 \\
0 \longrightarrow \pi_{1}(\Sigma) \longrightarrow \pi_{1}(M) \xrightarrow{g} \pi_{1}(O) \longrightarrow 0
\end{array}
$$

Since $\chi(S)<0$ we may write $S=\mathbb{H}^{2} /\left\ulcorner\right.$ and identify $\pi_{1}(S)$ with $\Gamma<$ Isom $\left(\mathbb{H}^{2}\right)$. Analogously we consider $\pi_{1}(O)$ inside Isom (\mathbb{R}). The map

$$
(f, g): \pi_{1}(M) \longrightarrow \operatorname{Isom}\left(\mathbb{H}^{2}\right) \times \operatorname{Isom}(\mathbb{R})
$$

is injective and its image is discrete and acts freely on $\mathbb{H}^{2} \times \mathbb{R}$, inducing a finite-volume $\mathbb{H}^{2} \times \mathbb{R}$ structure on M.

