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Proof. Let v C S? be a closed geodesic. The surfaces S2 x y and v x R ;
are totally geodesic, because they are fixed by some isometric reflections of v
52 x R. Therefore the sectional curvatures of horizontal and vertical planes S?v “ ot
equal the gaussian curvatures of these surfaces, which are 1 and 0. O ‘((’('\Qd o oord N +
@ Proposition 12.4.2. We have 82 X@ /P
Isom(S2 x R) = Isom(5?) x Isom(R).
(57 x B) = Isom(S?) x Isom(R) - (ki) ‘
Proof. We certainly have the inclusion D, which gives to every point g€ “
52 x R a stabiliser in Isom™(S? x R) isomorphic to SO(2) x C,, a proper
R TEE _ )
maximal subgroup of SO(3) by Proposition 6.2.15. N —
If there were more isometries that that, there would be more fixing p since ~ ¥ R
they act transitively on S% x R and the stabiliser would be the whole of SO(3),
a contradiction because the sectional curvature of S? x R is not constant. [ WAH 0 (k wm SPW
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We want to classify the closed Seifert manifolds with x > 0 and e = 0.
We start with the case x > 0.

b
Proposition 10.3.36. Every closed Seifert fibration with x > 0 and e =0 /xov ( B) = ’)(( ||5\>
is isomorphic to one of the following:

\
$?2x St RP? XS (S2.(p.q). (p. —q)). - Z(\ - ‘;L\
The manifolds of the last type are all diffeomorphic to 5 x St. N

Proof. If the base surface S is a sphere with < 2 singular fibres, we use
Exercise 10.3.6. Otherwise S is one of the following orbifolds (see Table 6.1):

/—(M (52,2,3,3), (S2%,2,3,4), (S8%23,5), RP? M"‘

with p > 2. In all cases except RP?, we get e # 0 for any choice of Dehn ‘(S\
filling parameters: for instance

gt+aq g3

e($% (2.a1). (2. @). (p.a3) = = + Lo

The other cases are analogous. O

The manifold RP? & St is not diffeomorphic to S2 x S, because they
have non-isomorphic fundamental groups. Moreover, RP? ¥ St is not prime:
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12.4.2. H? x R geometry. We give H? x R the product metric. The
discussion of the previous section applies as is to this case, showing that
horizontal and vertical planes in the tangent spaces have sectional curvature
—1 and 0. This in turn implies that

Isom(H? x R) = Isom(H?) x Isom(R)

has four connected components, two being orientation-preserving. It is con-
venient to write the exact sequence

0 —> Isom(R) — Isom(H? x R) -2 Isom(H?) — 0.

A discrete group ' < Isom(X) is cofinite if X/ has finite volume.
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We now prove the converse of Corollary 12.4.5.

Proposition 12.4.6. If M is a Seifert manifold with x < 0 and either 7,\’%
OM # @ or e = 0, the interior of M admits a finite-volume complete H? x S1 4
geometry. 4
r/\ 3 i bandle
Proof. By hypothesis there is a section  of M — S, which is the fibre of L ‘\/
a bundle M — O over a 1-orbifold O, see Section 11.4.4. The two structures

give two exact sequences M — <

0— K — m(M) - m(S) — 0,

s 5 1

0 — 1y () — my(M) - 71(0) —» 0. = q ™M S

Since x(S) < 0 we may write S = H?/r and identify m1(S) with I < L J
Isom(IH?). Analogously we consider 71 (O) inside Isom(R). The map

(f. 9): m(M) — Isom(H?) x Isom(R)

is injective and its image is discrete and acts freely on H? x R, inducing a
finite-volume H2 x R structure on M. O



