Last class we were studying H12×IR and SC2 mfds.

Both have $\chi(B) = 0$ and we characturized these according to their scattelding A. If A(m) was scattelding with $m \ge 5$ we called B generic. If M = 3,4 then B is called <u>exceptional</u>. If m < 3, then $\chi(B)$ cannot be negative. Then we constructed Y the branchod scattelding that admits immersions of all A(m) where $M \ge 5$. In fact, we will punch an extra hole into the scattelding for all B (we explain the reason below) and so the Y below actually admits immersions of all A(m) with $m \ge 6$.

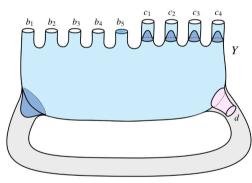


Figure 2: The branched scaffolding Y

Aim: merge all boundary comps. A Y except d to obtain a branched sunface X (see below). Then consider X×S' and attach a "Swiss army lenife" of bundle attachments which are S' bundles over the scaffolding attachments (Mob, A, Jisc w/ one pt.)

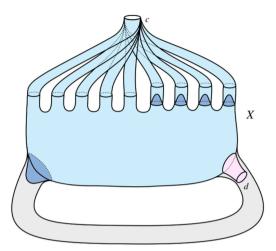
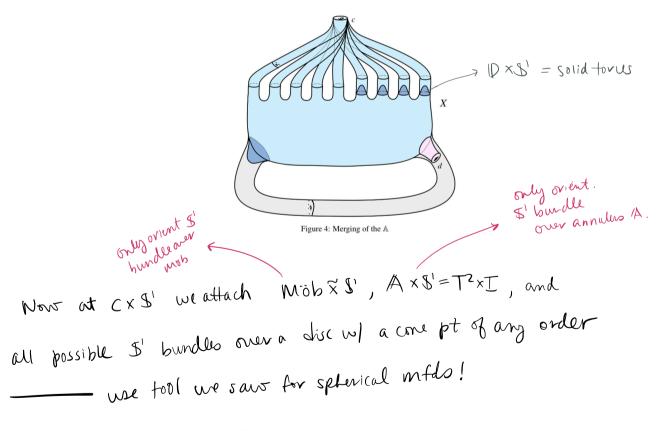


Figure 4: Merging of the \mathbb{A}

A way to envision X×51:



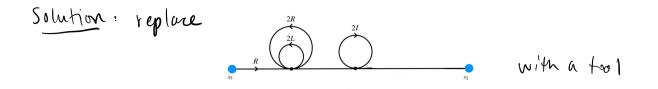
The result is a branched mfd W that admits immensions
of all orient. SF mfds M wl exactly one bdy comp
and B a generic orbifold wl
$$X(B) < 0$$
.

From this branched mfd we then want to differentiate between HIZXIR and Siz mfds by either ensuring e=o or e≠o resp. So we do a Delin filling that either extends product structure or destroys it. Untortunately, our schip makes this impossible. To understand why, consider the following two mfds :

$$\dot{w} \Im M = \Im \times \Im$$
.

Now consider the milds. \overline{M} and \overline{M}' ubtained from M, M'by extending the product structure so that \overline{M} and \overline{M}' are $\frac{H^2 \times IR}{III}$ milds. In particular, \overline{M} is obtained from M by Deln Filling along \overline{V} so that home. surface S in M extends to a hours surface \overline{S} in \overline{M} :

Similarly, JW' is filled along V. Issue: If we want a branched mtd M HIZXIR from W, admitting immensions of all HIZXIR medo will generic boxe B, we would need to Dehn fill @ OW along diff arrows for diff. Mfds M.



called a <u>variable</u> branched disc so that the boundary or a horizontal surface in any mfd M admitting an immunion to W is always the <u>same</u> prescribed curve in ∂W . In this way we change our branched mfd W to "pick out" the horizontal surface in a canonical way. Call this curve that is the canonical bdy of a horiz Surface \prec in ∂W .

- Thin to construct M HIZXIR from W we simply Duhn Ain along 2.
- To construct M_{SL_2} we allows all other Dehn fillings at ∂W except along d [this destroys product structure and ensures $e \neq 0$].

We handle the exceptional cases similarly according to the following chart of possible scaffolding attachments.

Exceptional Case	∂1 attachments	∂2 attachments	∂3 attachments	$\partial 4$ attachments
$(4, \le 3)$	Möb, A,	Möb, A,	Möb, A,	Möb, A,
	$p_1 \ge 2$	$p_2 \ge 2$	$p_3 \ge 2$	
$(4,4;\geq 3)$	$p_1 \ge 3$	$p_2 \ge 2$	$p_3 \ge 2$	$p_4 \ge 2$
$(3,3;\geq7,\geq3)$	$p_1 \ge 7$	$p_2 \ge 3$	$p_3 \ge 2$	×
$(3,3;\geq 5,\geq 4)$	$p_1 \ge 5$	$p_2 \ge 4$	$p_3 \ge 2$	×
$(3,3;\geq 4,\geq 3,\geq 3)$	$p_1 \ge 4$	$p_2 \ge 3$	$p_3 \ge 3$	×
$(3,2;\geq 3)$	$p_1 \ge 3$	$p_2 \ge 2$	Möb,	×
$(3, \le 1)$	Möb, A,	Möb, A,	Möb, A,	×
	$p_1 \ge 2$			