1. Combinational Chara Chuization of Geometric 3-manifords
Joint WI D. Cooper and L. Mavrakis
Overall idea (Thuiston):
Let J be a family of manifolds
find M, a finite construction kit with gluing values
such that

$$g(m) \triangleq$$
 the set of Copt) manifolds that can be
built with the pieces of M
is exactly J.
Example:
 $S^{1} = \int_{0}^{1} \int_{0}^{\frac{1}{2}} \int_{0}^{\frac{$

a family of manifolds is locally combinatorially defined (LCD) if J = g(M) for some M. Examples of LCD families :

Main Theorem (Cooper-Marrakis-P.): The set of closed orientable 3-manifolds that admit a particular Thurston geometry is LCD. (8 theorems in one)

these are all seifert fibered spaces (SFS), i.e. a circle bundle Over a 2-dim Orbifold B.

Today: Focus on spherical manifolds.

Det: A spherical manifold
$$M = S^3/r$$
 where $r < SO(4)$
is a finite subgroup acting freely by rotations on S^3
(all such mfds are closed, orientable)

But also, a SFS admits a thurston geometry determined by $e(M) \in \mathbb{Q}$ and $\chi^{ovb}(B)$. e(M) measures the defect from M being a product.

	$\chi > 0$	$\chi = 0$	$\chi < 0$	
e = 0	$\mathbb{S}^2 imes \mathbb{R}$	$\mathbb{E}^2 imes \mathbb{R}$	$\mathbb{H}^2 imes \mathbb{R}$	<
$e \neq 0$	\mathbb{S}^3	Nil	\widetilde{SL}_2	

Equiv. Det: A spherical manifold is a SFS w/ $\chi^{orb}(B) > 0$ and $e(M) \neq 0$.

Mean (CMP): A closed ovientable 3-mfd M immerses in Ms iff M is a spherical manifold.

types of spherical 3-manifolds:
Possible base orbifolds B with
$$\chi^{orb}(B) > 0$$

1) $S^2(2,2, n)$ n^{20} lens spaces
2) $\mathbb{RP}^2(n)$ n^{20} lens spaces
3) $S^2(n,n)$ n^{20} } prism manifolds
4) $S^2(2,3,n)$ $n=3,4,5$ } other

Terminology: Let $A = D^2 \times S'$ be a solid torus. The curve α in $\partial A \cong T^2$ bounding the disc D^2 is called the <u>meridian</u> of A.

EXS :

Det: A lens space M is obtained from two solid tori A and C by gluing DA to DC subject to the condition that the Meridian d of A does not equal the meridian & of C

Note: Fixing A to be the standard solid torus, then in the basis $\binom{1}{0}$, $\binom{2}{1}$ for $H_1(\partial C, \mathbb{Z})$, $\mathcal{Y} = \binom{2}{4}$ where $P_1 q_2$ are coprime and $\binom{P}{4} \neq \binom{1}{0}$.

Standard solid torus standard meridian

Note: Solid torus $U T^2 \times I = \text{ solid torus}$ (onsider matrices $L = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ and $R = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$. Then, $L \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a+b \\ b \end{pmatrix}$ $R \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a+b \\ b \end{pmatrix}$

EX: Suppose A, C are solid tori. $x = \begin{pmatrix} b \\ b \end{pmatrix} \in \partial A$ (standard merid.) and $Y = \begin{pmatrix} b \\ 2 \end{pmatrix} \in \partial C$

Lemma: For any
$$\begin{pmatrix} P \\ Q \end{pmatrix} \neq \begin{pmatrix} 1 \\ o \end{pmatrix}$$
 with P, Q . Coprime
 $\exists Q \in \langle L, R \rangle \cdot R$ s.t. $Q \begin{pmatrix} 1 \\ o \end{pmatrix} = \begin{pmatrix} P \\ Q \end{pmatrix}$.

Therefore, any lens space immerses in Ms with immersion path endpts $X_2, X_5 \in \Gamma$.

What about the other direction of the proof? We have taken precautions s.t. \$2x8' and T2xI/~ don't immerse in Ms

Lemma: For any closed mfd. M that immerses in Ms, the immersion path in Γ has endpoints in $\{X_1, X_2, ..., X_5, Z\}$

Lemma: If M is dosed mfd. w/ immension path endpts X2 and X5, then M is a lens space (or a cover of a lens space)

ę

Figure 10: A branched manifold for SOL