A Combinatorial Characterization of Geometric 3-manifolds
Joint w/ D. Cooper and L. Maurakis
Overall idea (Thurston):
Let I be a family of manifolds
find m, a finite construction kit with gluing vales such that
$g(m) \triangleq$ the set of (copt) manifolds that can be built with the pieces of m is exactly \mathcal{I}.

Example:

$$
\mathbb{S}^{1}=b \text {, let } \mathcal{J}=\left\{\text { covers of } \mathbb{S}^{\prime} \text { of } \operatorname{deg} \geq 3\right\}
$$

Glim:

$$
w\{1,
$$

with the following gluing vales build exactly J

Gluing Rules: ($i \rightarrow j$ means that the end of i is glued to start of j)

$$
1 \rightarrow 2 \quad 2 \rightarrow 3 \quad 3 \rightarrow 4 \quad 3 \rightarrow 5 \quad 3 \rightarrow 1 \quad 4 \rightarrow 1 \quad 5 \rightarrow 1
$$

Pf sketch: 2 parts (1) m builds all covers of deg ≥ 3
(2) m builds no other closed $1-m f d s$
(1) Note 1: pieces 1,2,3 build all covers of deg $3 k$

Note 2: pieces $1,2,3,4$ build all covers of $\operatorname{deg} 3 k+1,3 k$
Note 3: pieces $1,2,3,5$ build all covers of $\operatorname{deg} 3 k+2,3 k$

deg 3

${\underset{H 2 \rightarrow 3 \rightarrow 4}{\operatorname{deg} 4}}_{1 \rightarrow 2}$
$\operatorname{deg} 7 \quad 1 \rightarrow 2 \rightarrow 3 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4$
(2) How do we avoid building any other closed 1-mfds?
(i) leave out piece
(ii) choose gluing rules carefully
so that
all closed mAds built with M must contain a 3-piece..
Claim: Let $\delta=\left\{\right.$ covers of $\$^{\prime}$ of deg $\left.\geq 4\right\}$.

Then is a Lego set for $\&$.

Deft: A local model is (K, v) where $K=\begin{gathered}\text { triangulation } \\ \text { of } \mathbb{B}^{n}\end{gathered}, v \in K^{\circ}$ Let M be a finite set of local models.
A simplicial complex L is modelled on M if for each vertex $w 0-L, \exists$ a nod. of w that is s.nomeo to a $(K, v) \in M$. a family of manifolds is locally combinatovially defined (LCD) if $\quad y=g(m)$ for some m.

Examples of LCD families:

1) Covers of $\1 of $\mathrm{deg} \geqslant k$
2) covers of $\1
3.) Let $m_{5}=\left\{\left(D_{5}, v\right)\right\}$
$m_{6}=\left\{\left(D_{6}, v\right)\right\}$

$$
m_{F}=\left\{\left(D_{7}, v\right)\right\}
$$

where D_{n} is a disc formed by cydically arranging n triangles around v
$g\left(m_{n}\right)=$ set of compact surfaces with $x(s) \begin{cases}>0 & n=5 \\ =0 & n=6 \\ <0 & n=7\end{cases}$
Note: $m=\left\{\left(D_{5}, v\right),\left(D_{6}, v\right),\left(D_{7}, v\right)\right\}$ then

$$
g(m)=\{\text { all opt surfaces }\}
$$

4.) Theorem (Cooper - Thurston, Waller '85): The Set of closed ovientable 3 -mfds is LCD using 3 local models.

Main Theorem (Cooper-Marrakis -P.) :
The set of closed ovientable 3-manifolds that admit a particular Thurston geometry is LCD. (8 theorems in one)

We need an alternate perspective:
Claim The set of closed 1 -mfds that immerses in

is exactly the set of covers of $\$^{\prime}$ of $\operatorname{deg} \geqslant 3$.
(1) all of there covers immerse in W
(2) a closed mfd that immerses in W is one of these covers

EQUIVALENCE
A family J of $\rightleftharpoons \exists$ branched $n-m f d W$ sit. n-mads is LCD. $\rightleftarrows M C W$ iff $M \in J$

Loose Def: A branched n-manifold is a generalization of a train track and branched surface

- Local picture in dimension 2
- $\operatorname{Dim} 1=$ train track

- A branched 2-manifold

Thurston's 8 geometries:

these are all seifert fibered spaces (SFS), ie. a circle bundle over a 2-dim orbifold B.
Today: Focus on spherical manifolds.
Deft: A spherical manifold $M=\$^{3} / \Gamma$ where $\Gamma<S O(4)$ is a finite subgroup acting freely by rotations on $\mathbb{\3 (all such mads are closed, orientable)

But also, a SFS admits a Thurston geometry determined by $e(M) \in \mathbb{Q}$ and $x^{\circ r b}(B)$. $e(M)$ measures the defect from M being a product.

	$\chi>0$	$\chi=0$	$\chi<0$
$e=0$	$\mathbb{S}^{2} \times \mathbb{R}$	$\mathbb{E}^{2} \times \mathbb{R}$	$\mathbb{H}^{2} \times \mathbb{R}$
$e \neq 0$	\mathbb{S}^{3}	Nil	$\widetilde{S L}_{2}$

Equiv. Deft: A spherical manifold is a SFS $w / \chi^{\operatorname{orb}(B)>0}$ and $C(M) \neq 0$.
Γ
representing branched $3-\mathrm{mfd}$ Ms

$$
\exists \pi: M_{s} \rightarrow \Gamma
$$

every point on black edge rep. T^{2}

- = solid torus
- $=K \tilde{x}$ I

位 $=0$ O $\} \times \Phi^{\prime}$

Theorem (CMP): A closed ovientable 3-mfd M immerses in M_{s} iff M is a spherical manifold.

Types of spherical 3-manifolds:
Possible base orbifolds B with $\chi^{\text {orb }}(B)>0$
$\left.\begin{array}{ll}\text { 1.) } \mathbb{S}^{2}(2,2, n) & n>0 \\ \text { 2.) } \mathbb{R} P^{2}(n) & n>0\end{array}\right\} \quad$ lens spaces
3.) $\left.S^{2}(n, n) \quad n>0\right\}$ prism manifolds
4.) $\left.\mathbb{S}^{2}(2,3, n) \quad n=3,4,5\right\}$ other

Terminology: Let $A=\mathbb{D}^{2} \times \mathbb{S}^{1}$ be a solid torus. The curve α in $\partial A \cong T^{2}$ bounding the $\operatorname{disc} \mathbb{D}^{2}$ is called the meridian of A.

ES:

Standard solid torus standard meridian

Deft: A lens space M is obtained from two solid tori A and C by gluing ∂A to ∂C subject to the condition that the meridian α of A does not equal the meridian γ of C.

Note: Fixing A to be the standard solid torus, then in the basis $\binom{1}{0},\binom{0}{1}$ for $H_{1}(\partial C, \mathbb{Z}), \gamma=\binom{p}{q}$ where p, q are coprime and $\binom{p}{q} \neq\binom{ 1}{0}$.

Question: where do lens spaces possibly immerse in
 ?

Note: Solid torus $U T^{2} \times I=$ solid torus
consider matrices $L=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $R=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$. Then,

$$
L\binom{a}{b}=\binom{a+b}{b} \quad R\binom{a}{b}=\binom{a}{a+b}
$$

Suppose A, C are solid tori. $\alpha=\binom{1}{0} \in \partial A$ (standard merid.) and $\gamma=\binom{1}{2} \in \partial c$

C

Then $R \cdot R\binom{1}{0}=\binom{1}{2}$.

Lemma: For any $\binom{p}{q} \neq\binom{ 1}{0}$ with p, q coprime $\exists Q \in\langle L, R\rangle \cdot R$ st. $Q\binom{1}{0}=\binom{p}{q}$.

Therefore, any lens space immerses in M_{s} with immersion path endpts $x_{2}, x_{5} \in \Gamma$.

What about the other direction of the proof?
We have taken precautions s.t. $\mathbb{S}^{2} \times \mathbb{S}^{\prime}$ and $T^{2} \times I / \sim$ don't immerse in M_{S}

Lemma: For any closed $m f d . M$ that immerses in $M s$, the immersion path in Γ has endpoints in $\left\{x_{1}, x_{2}, \ldots, x_{5}, z\right\}$.

Note: $T^{2} \times I \curvearrowright{ }^{2 R}$ is impossible

Can't glue up and get a mfd.
I 4 fold cover of,

Lemma: If M is dosed mfd. w/ immersion path end pts x_{2} and x_{5}, then M is a lens space (or a cover of a lens space)

Figure 10: A branched manifold for SOL

